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Abstract

Four different preliminary estimators are employed by the Statistical Reporting Service
(SRS) of the U.S. Department of Agriculture to obtain the final estimate for livestock
inventories of major States. A composite >stimation model is proposed here to solve the
dilemma of how to combine these four estimators. The composite estimator is derived by
minimizing a quadratic function subject to linear constraints. The variance and mean
squared error of the composite estimator are evaluated by the jackknife method.
The author analyzed estimator bias by assuming the tract estimator to be unbiased when
nonsampling errors are considered. Numerical results based on the data from the 1984
June Enumerative Survey conducted by SRS support the use of composite estimation.
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Composite Estimation of Totals
for Livestock Surveys

Lynn Kuo
1. Introduction

The June Enumerative Survey (JES) conducted by SRS is a multi-purpose probability
survey where basic information concerning crop acreages, livestock inventory, and other
agricultural characteristics are collected. The sampling units for the annual survey are
selected from two sampling frames that have been constructed and are maintained by
SRS.

The Area Sampling Frame is stratified by land use. This frame represents 100 percent of
the geographical area of interest. Selection of the sampling units (segments) is from
within each land use stratum. These units will vary in size but are targeted to be 1 square
mile for concentrated cropland areas. Information is collected from the operators of the
land within these segments by personal interview around the June 1 reference date.

A List Sampling Frame has been constructed by SRS to contain known farm operators.
This frame is stratified by type and size of farm. Information is collected from the
selected list units by mail, telephone, or personal visit around the June 1 reference date.

Different estimators are often produced for the same characteristics. For example, four
estimators, tract, farm, weighted, and multiple frame screening estimator, are produced
for livestock items for each of the 10 major States. These 10 States usually account for
more than 80 percent of the U.S. hogs and cattle inventory. Three of the estimators are
derived from the same primary sampling units. Due to different methods of associating
the farm products with the segments (primary sampling units) from the area frame, three
different estimators are produced. The tract estimator counts only the farm inventory
within the segment. The farm estimator would include the farm inventory beyond the
segment, so long as those farm products belong to the same operator residing in the
segment. The weighted estimator uses the ratio of tract to farm acreages operated to
prorate the farm inventory for each survey item to a tract level. A fourth estimator
called the multiple frame screening estimator is predominantly computed from list sample
data. To compensate for the incompleteness of the list frame, an area frame estimate of
operators sampled but not found on the list is computed and is added to the list estimate.

One of the problems faced by the statisticians at SRS is finding a method to combine the
four estimators into one. A composite estimation model is proposed here. This composite
estimator is motivated by minimizing the mean squared errors of a family of weighted
averages of the four preliminary estimators.

A brief discussion of the present procedure used by SRS to derive the final estimate can
be found in the section headed by "forming the estimates" in Hog and Pig Reports (or
Cattle Reports); A Handbook on Surveying and Estimating Procedures (Crop Reporting
Board 1979 and 198I). To summarize: each State office obtains the summary for all the
different estimators and makes its recommendations and comments to the Washington,
D.C. office. In Washington, the Crop Reporting Board (CRB) is responsible for the final
estimates. The CRB consists of the Chairperson and Secretary of the CRB, Director of




the Estimates Division, Branch Chief, Section Head, and several other commodity and
sampling specialists. The CRB meets to review the current estimates, previously
published estimates, and other check data at the State and national levels. The review
process is assisted by graphs as in Figure 0 which plot the different estimates over time.
The check data include slaughtering information from cormmmercial packing plants, import
and export information, and !].S. Census of Agriculture information, available every 5
years.

Rasically, the CRB combines four preliminary estimates into one final estimate published
by SRS according to two processes. One is a judgmental process exercised by both the
State offices and the CRR to obtain a final number. This process has also been described
as a subjective weighting scheme by SRS (see p. 40 of Bvnum et al 1985). This number is
further examined against check data by balance sheet inethods. Revisions might be
employed in light of the check data.

The judgmental process puts the CRB in a potentially vulrerable position to defend the
repeatability, accuracy, and ability to assess the variance of their final estimators.
Composite estimation is proposed to replace the judgmental brocess.

In addition to the balance sheet methods, statistical methodology using past data and the
Census of Agriculture information is also needed for the revision process. Further
improvement on the composite estimator can be obtained. However, it is beyond the
scope of this paper.

Other approaches such as empirical Bayes and linear Rayes were also explored by the
author to solve this problem. Composite estimation has been pursued. The strictly
frequentist and nonparametric features of composite estirnation are also shared by
classical survey sampling. These two features give comnpasite estimation the greatest
potential for implementation by SRS.

As can be seen from the numerical results in Section A, not only variances but also
nonnegligible biases affect the accuracy of the preliminary estimators. Consequently,
analysis of biases has to he incorporated. The author assumes that the tract estimator is
unbiased, and all other estimators are biased when nonsanpling errors are considered.
This assumption is also supported by Nealon (1984), where discussion on the biases of the
weighted and multiple frame screening estimator can be found. The tract estimator by
design is least susceptible to nonsampling errors. An unbiased estimator of the bias
squared term developed in Section 4 is used for the biased preliminary estimators.

Some of the major recommendations given by a 1980 statistizal review panel of non-USDA
statisticians are as follows (see p. 2 of Bynum et al 1985, 1. The CRB should have
standard errors, biases, and historical errors available to them. 2. State statisticians
should provide recommendations expressed as point estimates and their ranges. 3. The
bias component of error on probability based estimators should be quantified. 4. SRS
should publish at least the probability based estimates. 5. CRB should set national
estimates that lie within bounds of some form of confidence limit or some weighted
combination of estimates adjusted for bias. The analysis developed in Section 4 provides a
solution to quantify biases. The composite estimation developed in this paper provides an
adjustment for component weights depending on biases.



Mosteller (1948) discusses the desirability of pooling the data. He describes several ways
of pooling data from two samples to estimate the mean of one of the populations. He
illustrates it by using data from the normal distribution, but his ideas are applicable in a
broader context. A stout believer in unbiasedness would only use the tract estimator
which is least susceptive to nonsampling errors. However, most statisticians are willing
to accept some bias to reduce the mean squared error. This is done by pooling all the
available data.

Theoretical work on composite estimation for independent observations from the normal
distribution is given by Graybill and Tseal (1959). To combine two independent unbiased
preliminary estimators for the common mean, they show the composite estimator has
uniformly smaller variance than any of the preliminary estimators so long as each sample
size is greater than 10. Further improvement and other related references are given by
Brown and Cohen (1974). Although the situation at SRS is much more complicated, these
theoretical works shed light on the advantage of intelligently combining estimators.

It would be desirable to have theoretical results for composite estimators without
distributional assumptions. Many of the estimates SRS produces are influenced by large
farm operators in the sample. It would be difficult to justify a particular distribution
assumption, especially for repeated use.

Composite estimation has been used by numerous statisticians in applications. Schaible
(1978 and 1979) uses it to estimate small area statistics for the Health Interview Survey.
Brock, French, and Peyton (1980) provide an empirical evaluation of mean squared errors
of composite estimators, and suggestions for component estimators for small area
estimation. Cohen and Sommers (1984) provide empirical evaluation of composite
estimation of cost weights for the Consumer Price Index. There is also extensive
literature on composite estimation for the Current Population Survey for panel studies
and rotation designs. See Wolter (1979) for the theory, applications, and other references.

Composite estimation has been anticipated by the statisticians at SRS. Houseman (1971)
proposes composite estimators which combine estimators from a probability survey and
indicators from a nonprobability survey. He indicates that weights from the probability
survey should be a function of the variances and covariances of the estimators. Weights
for the nonprobability survey are assigned according to past performance and other
information.

Bosecker and Ford (1976) at SRS develop a composite estimator by generalizing Hartley's
multiple frame estimator to stratified samples. The total for each stratum in the overlap
domain is estimated by a composite estimator. They show by empirical results from two
States that the sampling errors of this estimator are 14 percent lower than that of the
present multiple frame screening estimator. This proposed estimator has not been
adopted by SRS in its operational program.

In Framework for the Future, a report of the Long-Range Planning Group of SRS, Allen et
al (I983) make the following suggestions regarding CRB standards. An objective
procedure for weighting the different estimators should be developed. These weights
could be determined by reviewing previous estimators prior to the availability of the
current data. Nealon (1984) reviews the strengths and weaknesses of the four estimators
and compares them to the official statistics published by the CRB to gain insight on the
objective weighting scheme. It is not clear to the author how SRS intends to pursue these
suggestions.
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A possible simplifying assumption is that the variance and covariance of the preliminary
estimators are quite stable over the years. Therefore, weights determined previously
could be applied to current survey estimators. The composite weights proposed by the
author are derived from the current survey for the foilowing reasons. First, the
assumption of stabilized variances has not been validated. Second, if weighting is derived
from the covariance matrix, it would be more efficient and wccurate to derive it from the
present data.

Nealon's report has assisted the author to formulate the present study. Moreover,
Nealon's observations should be useful for future survey research. To incorporate them,
more complicated analysis is required such as developing an empirical Rayes or Bayes
method. These methods could be of future interest to SRS.

In the SRS National Conference Proceedings (1984), Ford summarizes group discussion
regarding composite estirnation. Most SRS statisticians agree that it may be a good time
to try composite estimation. However, the main difficulty remains in deciding the
weights. Suggestions made for weighting include use of standard errors of the preliminary
estimators for the probability surveys. Equal weighting or weighting depending on the
historical relationship of preliminary estimates to CRB estinates is suggested for survey
estimators in general. The author is skeptical of the latter suggestion. Two dangers are
also pointed out by the group. First, the use of composite estimators might preclude the
statisticians looking at its components and their properties. Second, the use of composite
estimators might deter SRS from deleting some of the components which are not very
useful. Perhaps both cautions are well-founded. The evaluation of the variance and mean
squared error of the composite estimator is proposed here. [t is sufficient to use only the
composite estimator if its mean squared error is smaller than those of its components.
Numerical results in Section 6 reveal that the methodology proposed here also has
potential for providing justification for deleting some of the less useful estimators. This
point will be expanded later.

In a recent publication entitled Crop Reporting Board Standards, Bynum et al (1985)
voices the need for defendable statistical methodology to replace subjective judgments
exercised by the CRB. They specify that the optimum weighting scheme depending on
current or historical sampling errors should be produced for the following reports: acres
planted, acres harvested, vield, production, stocks, hogs und pig inventory, and cattle
inventory. This paper provides a method for generating the optimum weights.

The four preliminary estimators presently in use at SRS are described in Section 2. A
review of composite estirmation and its specialization to SRS applications are given in
Section 3. Estimation of the second moment term needed in composite estimation is
discussed in Section 4. Variance and mean squared error ¢valuations of the composite
estimators are discussed in Section 5. Numerical results for total hogs and pigs inventory
from the 1984 June Enumerative Survey are given in Section 6. Finally, the conclusion
and recommendations are given in Section 7.



2. Description of Presently Used Estimators

As mentioned earlier, both area and list frames are used by SRS to select samples for
probability surveys,

The area frame for each State used by SRS is stratified by land use, for example, more
than 75 percent cultivated, 50-74 percent cultivated, 15-49 percent cultivated,
agriculture mixed with urban, non-agricultural land, etc. Each stratum is further
subdivided into more homogeneous geographic substrata called paper strata. Segments
(parcels of land) treated as the primary sampling units are selected as a simple stratified
sample from each paper stratum. A detailed description on how the segments are
constructed from aerial photographs with identifiable boundaries, how segment sizes and
the number of segments are determined, and how the segments are selected via count
units can be found in Houseman (1975) and Geuder (1984). The first segment selected in
each paper stratum is designated as replicate 1, the second segment as replicate 2, etc.
Approximately 20 percent of the segments are replaced annually on a rotational basis.

The list frame consisting of names of farmers is stratified by the size of farms contained
in the control information. For example, for hogs and pigs inventory, typical strata are no
hogs, 1-99 hogs, 100-199 hogs, 200-399 hogs, 400-999 hogs, 1000-2499 hogs, and more than
2500 hogs. Systematic sampling from each stratum is usually used to select the list
sample. See Section 5 of the June Supervising and Editing Manual (1984).

For each area sample, there are three different methods of evaluating the farm inventory.
A tract is a piece of land within the boundary of the segment under one management. A
tract may be the entire farm if all of it is in the segment, or a portion of the farm, if the
farm's boundary extends outside of the segment. The area tract estimator is an expansion
of inventory on all the tracts of the selected segments. The area farm estimator is an
expansion of inventory on the farms where the operator resides in the segment. The area
weighted estimator is computed using farm inventory weighted by the ratio of tract
acreage to farm acreage, for all tracts regardless of the residency of the operator. There
are no such complications for the list sample. The list sample uses the inventory of the
entire farm.

Three different domains are needed to explain the four estimators presently in use.
Domain DI, the nonoverlap domain, refers to the farms not in the list frame. (This
domain is automatically in the area frame, since the area frame is complete). Domain D2
refers to the farms in both frames not classified as "extreme operators." Domain D3
refers to the extreme operators in both frames. (Extreme operators are farmers with
very large livestock inventories. The exact definition for the list sample in the Domain
D3 will be given later.)

A version of a multiple frame estimator for estimating the population total can be written
as

~

Y = YDlLuD2, AL*PY D3 A1+ (1-p) Y p3

where Y D! u D2, Al is the tract estimator for the D1 u D2 domain, Y D3, Al and Y N3,
L denote the two estimators for D3 expanded from the tract and the list sample
respectively. The quantity p is determined by minimizing the variance of Y. The



estimator Y p3, A] usually has a large variance. Consequently, p is set to zero in the
SRS current procedure. The operational tract, farm, and weighted estimators denoted by
Y1, Y2, and Y 3, can be expressed as follows:

Y, = Y Dl uD2 Ai + Y D3, L, Wherei=1,2or 3, 2.1)

The estimator Y p] u D2, Ai is computed by

Y DI uh2 Al
u Al = ¢ e N < hk
U T hen M b (2.2)
where H = the collection of paper strata,
eh = the inverse of the probability of selection of each segment in the hth

paper stratum,

nK = the number of segments sampled in the hth;)aperstratunu
hk
Yl,hk = 7 t s}
1=1 hkl hk1l
g
y2,hk = Zhk f q 8
=1  hk1 hk1l hk1l
Thk %hk1
y13,hk =z f —
=1 PRL By Sy e,
thk! = the value of the characteristic for the " tract in the kth segment of the

hth stratum,

fhkt = the value of the characteristic for the Ith farm overlap with the kth
segment of the h stratum,

ahk| - acreage of the hklth tract,

bhki = acreage of the hkith farm,

ghk - total number of tracts in the hkth segment,

dhki = (1 if the operator of hkith farm resides in the hkth segment
{O otherwise,

“hkl :{1 if hkIth farm isin D u Dy

0 otherwise,
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The estimator Y p3, [ is computed from the list samples in the extreme operator (EOQ)
strata :

. y !
Y D3’ L =z __.l. ¥ v
1 ¢ EO n, k=1 "1k
where Yk - the value of the kth farm in the Ith stratum,
N| - the population size of the Ith stratum,
n) - the sample size of the 1t stratum,
EO = collection of list strata with extreme operators.

Remark 2.1: The definition of EQ strata from the list population depends on the State.
For example, the EO strata for Indiana hogs consist of three strata defined by the size of
the farms: 1000-1999 hogs, 2000-4999 hogs, and more than 5000 hogs. The largest
stratum is sampled with probability one. The other EO strata are sampled at varying
rates approximately one-quarter and one-half.

If there are nonresponses from the list sample, then the estimator Y 133, { is computed by

N r]_
Y D3’ L n N_l 5 (2-3)
le B0 r; k=1 Y1k,

the value of the k' th respondent farm in the 1th stratum,

where yji
the number of farms responding in the 1th stratum.

rl

"ot

Remark 2.2: The information on area samples is collected by the enumerators via
personal visits. If the person cannot be contacted, the enumerator fills in his or her best
assessments which are treated as sampled values. Consequently, no further treatment for
nonresponse in the area is used to obtain summary statistics.

The above three estimators are area-oriented. The fourth estimator is list-oriented. A
version of it can be written with

Y=Ypp,A3+9YD2, A3+ - Y D2, L+PYD3 A3+ {-PYD3 L, (2.4)

where Y pj, A3 denotes the weighted area estimator for domain Di, and Y pj, . denotes
the list estimator for domain Di. The constants p and q are set to zero in the present
procedures. Therefore, the fourth estimator, called the multiple frame screening
estimator, is given by

Y4=YD1,A3+YAD2,L+?D3,L (2.5)



The component QDI, A3 is defined as

n

a %nk Rkl
? . 7 e ” % f P .
Di, A3 ren " opal 1o DEL By hkl, (2.6)
where dhkl :{1 if hkIth farm e DI
0 otherwise

and all the other terms are defined as before.

The component Y 1 is defined as Y N3, 1 in equation (2.3) except the summation is
over | e EOC,

The set EQC denotes the collection of the list strata which ar= not the FO strata.

Remark 2.3: The indicator functions Shj and $hyp in equations (2.2) and (2.6) are used to
define the required domain estimators.

Remark 2.4: Discussion of multiple frame methodology can e found in Hartley (1962 and
1974), and in Section 5A.15 of Cochran (1977).

Remark 2.5: The estimators Y ;, i = 1, 2, or 3, are basically derived from the area frame.
However, the list estimator replaces the area estimator for the farmers classified as
extreme operators. This perhaps could be interpreted as a robust procedure taken by SRS
to reduce the influence of the big farms in the area samp'e. Further study of robust
estimation in surveys is needed,

Remark 2.6: The author questions the desirability of setting p and q to zero, especially in
equation (2.4). A major portion of the area information is thrown out.

The variances of the four prelimninary estimators used by SRS are as follows:

Fori=1, 2 or 3,

\:. .=V v.) = v (

. AN
ii i o1 uopz, At Y Cp3,q)
n
h
(S (L - l) )
= h o T (y ) _ 1
hen (I-1) k=1 i, hk , h.)
j
r
] 2
(N, - _
tr Moot (Ypr = vp! (2.7)
le EO r, {(r, - 1) K=1 )



o 1
= 7

where y',h. . /i, hik/ nh and vy = Egl ylk'/ r,.
ga = VY=YV a9) + 7V b3, 1)
n,
H - (P _ l) n - 2
=2 % t%h Iy o %)
h=1 T- L k=1 ’ P
"h
Y
N, (N -1y 1 _ 2
+ 7 L (ylk' - ¥ ) (2.8)
lel ry (r. - 1) k'=1 .
1
B Ink k1
where 2 =z £ — & as in (2.1)
R
3 "h
A is defined by L v
3, h. g 3 hk/ "h

and L is the collection of all list strata including EO strata.



For the composite estimator developed later, we need the estimators of Cov (Y |, Y ;),i =
2, 3, or 4, denoted by Yii given as follows:

Fori=2or 3,
- z
1i heH
z
leEO
b3
14 heH
1:EO

(Th - 1)
-1

"h

(le rl
1 N
h (‘a - 1)
-1

nh

(N,l,__ rl
1 (rl 1)
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3. Composite Estimation

In this section, composite estimation is explained and is specialized to the SRS situation.
A heuristic argument for composite estimator for the simplest case is given below.

Let us assume there are two independent and unbiased estimators Y| and Y2 for the same
parameter Y with known variances ¢ 12 and o 22 respectively. let us propose

{’c = c\Afl +(1-0Y>y,
where ¢ is a constant with values between 0 and I. Then
EYc=Y
VIYQ) = c2012 + (1-c)2 0,2, (3.1)

To minimize V(Y¢), we should choose ¢ to be

V(YCO ) = 91 ) (3.2)

Note that (3.2) is always smaller than @ 12 and 092, For ol<o2, so long as we choose ¢
between (022-¢12) / (6722 + g1 2) and 1, we obtain an estimator with smaller variance than

012. See Schaible (1987 and 1979) and Royall (1979, pages 85-86) for more discussion on
composite estimation.

In general, the variances of Y | and Y 2 are unknown. However, they can be estimated
from the data. The estimated variances are denoted by 12 and 022. Therefore, the
composite estimator is given by

-11-



Since the weight for the cornposite estimator is now a function of the data, equation (3.1)
can no longer be used to evaluate the variance of the cornposite estiinator. Nevertheless,
the variance of the composite estimator can be estiinated by sample reuse methods such
as jackknife, bootstrap, randon group, and balanced repeated replication.

To generalize the above idea to the situation at SRS, let us propose a family of linear
combinations of the four prelirninary estimators:

w. Y. (3.3)

where o - w, - lforalliand Zw; = L.

We search for the one which minimizes the mean squared errors (MSE's) of the estimators
in the linear family. Note that

£(W) = MSE of Y, =E(i, ~Y)

JZ
=

Wy W E(Yi - V) iy, - V) (3.4)

where Y denotes the population total.

Since all the second moment terms are unknown, they have to be estimated from the data.
The estimation of the second moment terms will be treated in the next section. Let mi
and mjj denote the estimated fterms E(Y;-Y)2 and E(¢-Y)(0 'i-Y) respectively. The
composite estimator, denoted by \4;7 is denved from minimizing

W) =z w.l m% o wow m. . (3.5)

~ i 1 1 i#3 L] 1

subject to linear constraints o W, s 1, for i=1 to 4, anil ¥ w, = 1.
- i

A further refinement, motivated by the limited translation idea in Efron and Morris (1971,
1972) and Fay and Herriot (1979), is used to derive the final composite estimator. It
depends on a "safety factor" K, a positive number specified in advance.

Yi o= Yo o if Yy -Y] | K.SDOYYD),
O 7y

Y1 - KSDOY ()i Y - Y s KSD (Y ),
@]

Y1+ KSDOYD Y- Y <= KSP(Y)), (3.6)
O

where the estimated standard error SD(?l) is given by the square root of vjj as in equation
(2.7).

-12-



This refinement, which limits the amount the composite estimator can deviate from the
unbiased estimator, is employed to guard against instability. One can still achieve
substantial gain from the composite estimatijon.

Remark 3.1: A program using Lagrange multipliers and the PROC MATRIX procedure in
SAS has been written by the author to solve equation (3.5), a convex programming
problem with constraints. See Appendix II for a detailed explanation.

Remark 3.2: A flow chart of the entire SAS program is in Appendix I, and the entire
program is given in Appendix IIl.

Remark 3.3: Another version of a composite estimator can be developed by minimizing
the mean squared errors of the estimators:

3 3 ) ) 3 )
Y= D wys Yoy, a1 Y I W Yoo, oai Y Wos Yp2, 1 F T Y3i Yp3, al
i=1 i=1 i=1
* W34 Yp3, 1, (3.7)
3 4
subject to I W, z w, . = 1 for fixed h=2 or 3,
i=1 11 = 1, i=1 hi

and o < w,_. < 1 for all w.

The author has pursued the earlier formulation (3.3) and (3.5) for the following reasons.
(1) The solution to equation (3.5) is less sensitive to misclassification errors due to domain
determination. (2) It mimics the process used by the CRB. The relative importance of
the four preliminary estimators (optimal weights in composite estimation) is of particular
interest to the CRB and other statisticians at SRS. (3) The solution is simpler to equation
(3.3) than to equation (3.7).

-13-



4, Estimation of Second Moments

Development of the estimation of the second moment terms incorporates bias analysis and
is discussed in this section.

As is seen from equation (3.5), there are four MSE's and six mixed central moments to be
estimated. To estimate these terms, it is assumed:

E 91 =Y
EYy=Y +bo(Y),
EY3=Y+b3(Y),
E Yy =Y+ by (Y),
where b;j (Y) denotes the bias of the ith estimator.

All the following identities are used for the estimation procedure.

m% :E(?l_y)Z:V(Yl), (4.1
miz :E(Yi-Y)Z:E(Yi-YHZ»ZCOV(YI,Yi)—V(Yl),

for i=2, 3, or 4, (4.2)
ml) = COV (YAI, \?’), for ]?/1, (4-3)

mi; = E (Y; - Yl)(Yj-'Y1)+(ZOV(Yl,Yﬁ)+‘C0v(Yj,Yj)- V(Y ])
for i and j#£I1. (4.4)

It is straightforward to verify these identities. For example, for i£14#j
mij =E(Yj-Y)(Yj-Y)

:E(Yi-Yl+?1-Y)(Y3-~Y1+Y1-Y)

SEY - YD - YD+ E(Yi-Y +Y-YD (Y- Y)
CEY =Y+ Y- YD (Y -Y)+ VYD)

S E (Y- Yl)(Yj- ?1)+(:ov(Yi,Y1)+-COV(Y3,Y1)-\MY1L

Using identities (4.1) - (4.4), unbiased estimates of the mixed central moment terms, and
refinements over the unbiased estimates of the MSE terms can be obtained as follows.

4=



m% Vil (4.5)

rAnlz = max { (\?1 - \?1)2 +2V]i- V11, vij= fori=2,3or 4, (4.6)
!;'1” = vlj, for j#l (4.7)
";‘ii :(AYj—Yl)(Qj—Y[)+ Vii + V1j - V11, for i, j£l, (4.8)

where vij's are given in Section 2.

The maximum function in rAn% is employed to ensure that the estimators for the bias
squared terms are nonnegative.

Remark 4.1: Equation (4.2) without the covariance terms has been used by Brock, French,
and Peyton (1980) to estimate the MSE's for independent estimators. Equation (4.2) has
been used by Cohen and Sommers (1984) to estimate the MSE's of regional mean
expenditure and composite estimators.

Remark 4.2: FEquation (4.6) enables us to obtain an unbiased estimate of the bias §<iuared
term bi (Y), for i#l, ...,4. A refinement over this unbiased estimate is given by bj=max

{8 -Y0%+2 vij - vit - vii, 0}

-15-



5. Variance and Mean Squared Error Evaluation of The Cornposite Estimator

The heuristic argument for using composite estimation has been given. The variance and
mean squared error estimates for the cornposite estimator are needed to justify the gain
in using composite estirnation. The jackknife method i¢ used to estimate the variance and
mean squared error. This method is adopted because of its sirnplicity of explanation and
ease of programming. See Ffron (1982), Wolter (1985) for exr=llent expositions on sample
reuse methods.

Assume the data are divided into g mdependent groups. Let Y (i) be an estimator derived
from the data with ith group de!eted The ith pseudo-value of Y is defined to be
Y* (i) = gY - (g-1) Y (i), where Y is the estimator based on the full sarmple.

The jackknife estimator of the variance of Y is given by

. 1 el x —* D
- (v ) = b (v . -y )
J 0 glg-1) i=l (1) (5.1)
* dJ * /
where v =151 Y . /9.
i=1 (1)

If Y is an estimator other than Y|, then the mear squa-ed error of Y can also be
estimated by the jackknife method.

me () = -y v oA 5ot o et L
1 g
b X 5%y 2
N U : E BRI )
mse, o (v) = 3 §:1 [l l(i)) g(g-1) ir[ ( (i) YA 1(i) V)
1 g ( * ,*)2
D Y - Y
FICEVEE ST o
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6. Numerical Results

The data are from the 1984 June Enumerative Survey conducted by SRS. Six States are
selected from the 10 major hog States which account for about 79 percent of the U.S.
hogs and pigs inventory (Crop Reporting Board 1984). Described below are summary
statistics prepared for each of the six States (Tables 1-6).

Seven estimates, denoted by Yi, i = | .., 7, are given for the total hogs and pigs inventory.
The estimates Y j, i=1, .., 4 are the tract, farm, weighted, and multiple frame screening
estimates defined before. The estimate Y5 is the composite estimate defined by (3.6) for
any K> 1. The estimate Yg is derived similarly to Y5 except by setting W2 = W3 = 0. In
other words, Yg¢ is the composite estimate by combining just the tract and the multiple
frame screening estimators. The estimate Y7 denotes the official CRB statistics
published in the Livestock Series: Hogs and Pigs (Crop Reporting Board 1984). The
optimal weights (denoted by W) for the components of Y5 derived from equation (3.5) are
given in the table. The optimal weights for Yg are denoted by W.

All the standard errors and root mean squared errors of the four preliminary estimators
are aAlﬁo estimated from equations (2.7), (2.8), (4.5), and (4.6) by taking square roots of vjj
and mj. The reader should note the root mean squared errors published by the Statistical
Reporting Service in their Crop Reporting Board official reports are computed
differently. These estimates are given in the tables (denoted by SD;j and J MSQj). Two
estimates of bias of Yj, i=2, 3, 4 are given. One is obtained from Remark 4.2, i.e, bj. A
second estimate is an unbiased estimate of the bias, i.e., bj = Yj-Y{.

For the variance evaluations of the composite estimator, the author has only completed
Indiana and Minnesota.

Due to different frame constructions by SRS of the replication codes of the area and list
samples, formulations of the groups of data for the jackknife method are slightly different
between the area and the list sample. The replication codes in the area sample which
usually run from | to 10 or | to 5 for each land use stratum are used. A land use stratum
defined at the beginning of Section 2 is a collection of paper strata. The replication codes
for each list stratum were generated by the author using random numbers. Several (3 or
4) replications are constructed for each list stratum.

The ith (1 <i< d) where d< g jackknife estimate is computed by deleting the ith replicate
of each land use stratum (i.e. deleting each segment from each paper stratum in the same
land use stratum). The expansion factor ep is adjusted by multiplying the number of
replicates/(number of replicates - 1) in each land use stratum. The number d is the total
number of replicates for all land use strata.

The ith (d + 1 < i <g) jackknife estimate is computed by deleting each replicate from each
list stratum sequentially. The adjustment on the expansion factor is automaticallz
obtained by using equation (2.3) where ro and yek' are obtained after deleting the it
subgroup from the data No data are deleted from the self-representing stratum (the
largest EO stratum).

The numbers d and g for Indiana are 31 and 55, i.e. the area sample is divided into 31
groups, the nonself-representing list sample is divided into 24 approximately independent
groups (6 strata with 4 groups each). The numbers d and g for Minnesota are 30 and 60.
The area sample for Minnesota is divided into 30 independent groups. The list sample is
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divided into 30 approximately independent groups (30 groups deriving from 10 strata with
3 groups in each stratum).

The jackknife method can be used for any estimators from probability surveys. Therefore,
for each of the estimators Yj, i=1, ..., 6, we compute its variance and mean squared error
estimates by using equations (5.1), (5.2) or (5.3) with Y replaced by Y;. Empirical results
reveal that there are no big differences between (5.2) and (5.3). Therefore, equation (5.2)
is used for estimating mean squared error. Empirical evaluations for the two States also
reveal that the variance estimates for the composite estimators are more sensitive to
outliers from the pseudo-values. Consequently, the Winsorized variance estimates and
mean squared error estimates (Winsorized methods are applied to the covariance and
variance terms in equation (5.2)) are used here in tables ! and 2. They are denoted by
SDIKRj and MSQIKR; i:1l, ..., 6. When i=l, .., 4, the quantities SDIKR; andiMSQIKR;
can be compared to SDj and ¥ MSQj, which are computed from the full sample using the
stratified design, to determine the goodness of the variance estimates by the jackknife
method. The discrepancy can be explained by the variances of the jackknife variance
estimator. The large operators in the area sample, not classified in the D3 domain, are a
major cause of this discrepancy.

Discussion of the Winsorized method can be found in Huber (1981, p 151) and Elashoff and
Elashoff (1978). Ten percent from each end of the pseudo-values of Indiana's data and 15
percent from that of Minnesota are Winsorized to obtain the variance estimates. The
same percentages are also used for the covariance estimate used in equation (5.2), where

*, . % x — % o x % .
the terms (Y (i) =Yy )Y () - Y |,w) are Winsorized with Yy and Y1,y denoting the

Winsorized mean of Y and Yi.

Due to the time constraints of the fellowship, the author did not explore other jackknife
and sample reuse methods to obtain more satisfactory variance and mean squared error
estimate of the composite estimator. However, the numerical results in each of the
Tables present enough evidence to show that the composite estimator performs very well.
Examining the mean squared errors and mixed moments of the preliminary estimators, it
can be seen that the composite estimate is very effective in selecting the desirable
components, i.e. the components with small mean squared errors or with negative
correlations.

Five summary points, Yj, Yj + SDj, and Yj + 2 SD;j for the preliminary estimates are
plotted in Figures 1 to 6 for each State. The two estimates V' 5 (composite) and Y7 (CRB)
are also plotted in the last column. These schematic plots spell out the necessity of
analyzing the biases in some of the preliminary estimators. Among all the approximately
unbiased estimates, the composite estimate is always quite close to the preliminary one
with smallest variance. Hence, composite estimators Y5 should perform better than all
the other estimates.

The weighted estimators (equation (2.6)) are used for the nonoverlap domain in the present
multiple frame screening estimator. However, it would be <impler to consider the tract
estimator for the nonoverlap domain. The term fh) .ahk|/ bhk] is replaced by thki in
equation (2.6). The resulting multiple frame estimator denoted by Y'; is defined by Y pl,
Al +Y D2, L+ Y D3, L. Consequently, cornposite estimators can also be considered by
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combining Yy, Y2, Y3, and Yy, or just Y| and Y'y. The numerical results for this case are
tabulated in the second half of each table. The only changes from the first half would be
all the related parameter estimates from Y';. These changes are given in the tables. The
terms which have not been changed are left blank in the tables. The terms with bar " "

have not been evaluated.

The motivation for considering Y'y instead of Yy is to reduce biases and respondents’
burden. It is seen from the tables that the bias of Y'y4 is less than that of Y4 in four out of
the six States. The composite estimator combining Y| and Yy requires only information
on the tract inventories and information from the list sample.

The results from lowa are particularly interesting. They reveal that the optimal
composite estimator is formed by combining just the tract and multiple frame screening
estimators, The use of Y'q is considerably better than Yq in terms of mean squared
errors. If there were enough evidence showing the same behavior over the years, the
alternative of deleting the farm and weighted estimators could be considered. Both cost
saving and improved accuracy of the estimate (by reducing respondent burden) can be
expected for this alternative procedure.

It is also interesting to note that the estimator wj \}J + Wi ‘A(q (without the outlier
ad]ustment as discussed in Remark 2.5) is equivalent to Y DI, Al + W1 Y D2 u D3, Al +

wy Yy D2 u D3, L. This latter estimator is exactly the full multiple frame estimator
proposed by Hartley (1962). Hartley proposes to choose optimal w's from the design
information. The optimal w's in this paper are derived from current data.

The farm estimator has traditionally been considered as an inferior estimator by the
statisticians at SRS. This judgment has also been confirmed in the analysis. The farm
estimator is only used in two of six States with less than 25 percent weight in composite
estimation. The present multiple frame screening estimator (which has been considered
from its variance evaluation to be a superior estimator by SRS) is shown to have
nonnegligible bias. The causes for this bias has been discussed by Nealon (1984) such as
misclassification errors due to domain determination, imputation techniques for
nonresponses in the list sample, etc. The bias component of the multiple frame screening
estimator has reduced its weight in composite estimation.
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7. Conclusion and Suggestions for Further Research

This paper discusses a composite estimation methodology which combines the different
preliminary estimators used by SRS into one by minimizing the mean squared errors of the
combined estimators. Some numerical results from the 1934 June Enumerative Survey are
presented. These results support the use of composite estimmation. It is recornmended
that SRS incorporate composite estirnation methodology into their Crop Reporting Board
procedures.

Although limited numerical results are presented here, SRS can casily apply the technique
and the computer program to other commodities, to other States (including the States
with only two or three preliminary estimators), and to data fram past years to gain insight
on the performance of the preliminary estirnators. Numericil results may also suggest
whether or not to delete some of the less useful estimators.

Research on the following topics is recommended:

(1) composite estimation for second stage sampling used in the December Enumerative
Survey,

(2) research on variance evaluation (The recent work on sanple reuse methods of Rickel
and Freedman (1984), and Rao and Wu (1984) could he explored.),

(3) research on sample reuse methods for multiple frame sarnpling,

(4) robust estimation for finite population sampling (See Varceman and Meeden (1983) for
some research results on trimmed and Winsorized estimators for finite populations.),
and

(5) empirical Bayes methodology (This methodology incorporates past data to improve
upon the composite estimators. See Robbins (1983) for discussions and ideas.).
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9. Table Captions

Fach of six major hog producing States have numerical results from the 1984 JES
summarized for comparative purposes (table 1-6). Each table has two sections. Results
using the weighted nonoverlap domain estimator (2.6) in the multiple frame screening
estimator are presented in the top half of each table. An alternate method which uses
the tract nonoverlap domain estimator is presented in the lower half of each table. Seven
estimates (Y;) are described. The notation is given below for -he estimators and summary
statistics.

Notation Description
Yi izl tract estimate (2.2)
i=2 farin estimate (2.2)
i=3 weighted estimate (2.2)
i=4 multiple frame screening estimate (2.6)
i=5 full composite estimate (3.6)
i=6 composite estimate using i=1, 4
i=7 official Crop Reporting Roard estimate
Wy optimal weights for the components of Y5
Wi optimal weights for the components of Y¢
SD; standard error estimate of Yj, i=l, ..., 4
SDIKR; jackknife standard error estimate of Y, i:1, ..., 6
MSQ; root mean squared error estimate of Yi, 1:1, ..., 4
MSQIKR; root mean squared error jackknife estiinate of Yj, i=1, ..., 6
bj estimate of bias (Remark 4.2)
b; unbiased estimate of bias (Y; - Y|)
N}lij mean squared error matrix of the four estimators

Variance estimates are computed for composite estimators (i=5, 6) in only two States--
Indiana and Minnesota (see tables | and 2).

Numerical results using the tract nonoverlap domain estimatcr is presented in the bottom
half of each table. Entries in the table reflect changes when the multiple frame screening

estimator (Y'y) uses the tract nonoverlap domain estimator. “ackknife variance estirates
are not calculated.
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Table 1. Summary statistics for Indiana by estimator Y;, 1984 June Enumerative Survey i

~

P Wi Wi SD; SDIKR;  IMSQ;  JMSQIKR; bi b;
(1,000)

Wtd. NOL Domain Estimator:

1 3,367 0 0.8293 412,634 349,212 412,634 349,212 0 0

2 3,797 0 470,456 506,901 587,733 568,014 352,280 429,977

3 3,616 1 269,265 204,888 249,265 204,388 0 249,070

4 4,331 0 0.1707 178,276 183,289 884,276 908,925 366,119 963,743¥

5 3,616 253,425 279,298

6 3,532 476,814 484,162

7 4,300

Tract NOL Domain Estimator:

1 0 0.7519

2 0

3 1

b4 4,141 0 0.2481 185,946 686,851 661,202 773,647

5 3,616 L L

6 3,559 o _

7

1/ Reference page 24 for a description of table captions.



Table 2. Summary statistics for Minnesota by estimator Y;, 1984 June Enumerative Survey 1/

i Y; & W, SD; SDIKR; Y MSQ; JMSQIKR; bi bl
(1,000)

Wtd. NOL Domain Estimator:

1 4,899 0 0.6516 698,755 550,851 698,755 550,851 0 0

2 5,226 0.2326 715,786 765,496 753,163 765,496 234,318 327,512

3 h,6us 0.5630 394,873 483,465 394,873 483,465 0 -253,687

4 3,753 0.2044 0.3434 236,931 278,648 941,385 1,054,340 911,081 1,145,488

5 4,598 665,203 709,733

6 4,500 685,620 777,168

7 3,870

Tract NOL Domain Estimator:

i 5 9.6543

2 0.2190

3 0.5905

4 3,768 0.1905 0.3457 250,228 939,799 905,874 1,131,409

5 —_ —_—

6 ————— —————

7

1/ Reference page 24 for a description of table captions.



Table 3. Summary Statistics for lowa by estimator Yj, 1984 June Enumerative Survey 1/

Y Wi Wi SD; IMSQ; bj
(1,000)

wtd. NOL Domain Estimator:

1 12,674 0.6132 0.6132 1,022,345 1,022,345 0

2 13,709 0 1,320,368 1,464,836 634,329

3 14,703 0 1,076,946 2,114,770 1,820,011

4 14,149 0.3868 0.3868 662,858 1,240,187 1,048,181

5 13,245

6 13,245

7 13,800

Tract NOL Domain Estimator:

1 0.3774 0.3774

2 0

3 0

4 13,786 0.6226 0.6226 723,831 861,289 466,784

5 13,367

6 13,367

7

0
1,035,081
2,028,578

1,475,235

1,112,458

1/ Reference page 24 for a description of table captions.



_8Z_

Table 4. Summary Statistics for Kansas by estimator Yi, 1984 June Enumerative Survey 1/

i Y

; Y & SD); I MSQ; bj

(1,000)
Wtd. NOL Domain Estimator:
1 1,418 0.1382 0.2421 192,280 192,280 4] 0
2 1,669 0 262,756 281,738 101,664 250,868
3 1,656 0.1699 172,486 228,935 159,302 238,514
4 1,485 0.6919 0.7579 125,479 125,479 0 67,031
5 1,505
6 1,469
7 1,485
Tract NOL Domain Estimator:
! 8 S.1604
2 0
3 0.3181
4 1,397 0.6319 0.8396 133,601 133,601 0 20,858
5 1,479
6 1,400
7

1/ Reference page 24 for a description of table captions.
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Table 5. Summary Statistics for Missouri by estimator ‘;(i, 1984 June Enumerative Survey 1/

~ A N

Y Wi Wi SD; J MSQ; bj bj
(1,000)

Wtd. NOL Domain Estimator:

1 3,960 0 0 796,198 796,198 0

2 3,915 0 782,721 782,721 44,750

3 3,859 0.4627 380,727 380,727 100,198

4 3,418 0.5373 1 305,689 305,689 542,118

5 3,622

6 3,418

7 3,400

Tract NOL Domain Estimator:

1 0 0.0264

2 0

3 0.6385

4 3,375 0.3615 0.9736 554,084 554,084 584,618

5 3,684

6 3,390

7

1/ Reference page 24 for a description of table captions.



-0€-

Table 6. Summary Statistics for Ohio by estimator Y;, 1984 June Enumerative Survey Y

Py W, Wi SD; JMSQ; by by
(1,000)

Wtd. NOL Domain Estimators:

I 1,326 0.7623 0.9037 205,630 205,630 0 0

2 1,547 0.2377 267,451 267,451 0 221,728

3 1,710 ] 175,623 392,840 351,397  384,2751

b4 1,848 0 0.0963 150,652 512,190 489,533 522,051

5 1,378

6 1,376

7 1,800

Tract NOL Domain Estimator:

! N.7623 0.9022

2 0.2377

3 0

4 1,756 0 0.0978 173,494 437,467 401,593 430,517

5 1,378

6 1,368

7

1/ Reference page 24 for a description of table captions.



10. Figure Captions

Figure 0:

Figures 1-6:

This chart illustrates some information available to the Crop Reporting Board
at the State, regional and national levels for different estimators. The
estimators are plotted over time for certain commodities of interest. Varied
check data are also available to the Board during their review. The plot is
for illustration purposes only and does not represent actual relationships
among estimators. The ¢ *.mators shown are Yj, where i=1,..,4, and are the
tract, farm, weighted aru nultiple frame screening estimates respectively.
The official Board level is noted as Y7.

These are schematic plots by State. Five summary points, Y,, Y, + SDj, and
Yi +2 SDj are plotted vertically for the tract (Y1), farm (Y3), weighted (Y3)
and multiple frame screening (Yq) estimates. The full composite estimate
(Ys) and the Crop Reporting Board estimate (Y7) are also given.
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1/

Figure 1: Schematic plot for Indiana ~
Camparison of estimates with confidence limits
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1/ Reference page 31 for a description of plot.

-33-



Figure 2: Schematic Plot for Minnesota 1/
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Yi Figure 3: Schematic Plot for Iowa L/ o
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1
Figure 4: Schematic Plot for Kansas-4/
Comparison of stimates with confidence limits
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Figure 5: Schematic Plot for Missouri L/
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Figure 6: Schematic Plot for Ohio 174
Comparison of estimates with confidence limits
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Appendix I: Flow Chart of the SAS Program

Area Data List Data
preliminary adjustrment 1. preliminary adjustment
surmmarize to the segment level 2. compute the totals, variances of the

EO list and non EO list.

compute totals, variances, covariances
of the tract, farm, weighted, and
weighted nonoverlap estisnators.

i

T _ - I
Combine to obtain the present four estimators
Evaluate four mean square errors and six mixed central moments

| Convex programming to search for the optimal weights
l and composite estimator (See Appendix II)

' Evaluate the variance and rnean squared ercor of this composite esitmator.
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Appendix 1I. Convex Programming to Search for Composite Weights

The application of the PROC MATRIX procedure used to solve the convex programming
problem described in Section 3 is given here.

From equation (3.5) in the text we need to minimize

2 witmi” e

f(w) = . ¥

i AWIW]!n”

[ (1.1

+—

subject to 0< wj < | for all i, and i

™

lW‘l:I.
Let the inequality constraint functions be denoted by gi(w) _ wj for all i. The Lagrange
multiplier technique is applied. A necessary and sufficient ~ondition for the minimum to
exist is as follows (see page 152 of Avriel (1976)):
There exists u, wij and positive constraints xj, i=1,...,4,
such that

yigi(w) = 0 for all i, (11.2)

VE(w) -2i ajvgilw) - uv(fwi-1) = 0, and the w's
satisfy the constraints of (II.1).
Equation (II.2) can be rewritten as

\iwi =0 (i=1 to &),

. Lo

m;i2w; + j7i (mijwi -1(/2) -u/2 = 0, (i=1 to &), (111.3)

n

iZ1 wi = L
There are nine equations with nine variables (four w's, four i's, and one u) to be solved
simultaneously. It would be easier to solve the first four equations, i.e.,Ai=0 or w;=0, then
substitute those values in the last five equations and solve them. To solve the first four
equations, there are 16 cases to be considered. The cases for all w;=0 is ruled out.
Therefore, there are 15 cases left. Fach of the 15 cases can be written as linear
equations with 5 variables. The function SOLVE in the PROC MATRIX procedure is used
to reach a solution. The miniinum of equation (Il.1) corresponds to the solution with all
non-negative variables. Rasically, the program searches fo- the minimal value of (II.1)
among all 15 cases of the possible combinations of the preliminary estimators:
combination of all the four (one case), combinations of three at a time (four cases),

combinations of two at a tirne (six cases), and just the prelirninary estimators (four cases).

Appendix III contains the complete program for all the 15 cases. A few cases are given
here to explain the PROC MATRIX program in Appendix I1I.
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Case 11 ;=0 for i=l..,,4, then equation (II.3) reduces to

Wlr%lz*’WZYﬁlz4-W3Iﬁ134—W41ﬁ14—lﬁ2 -0
. .2 . .

Wi m2 +W2m2 +WwW3mi]3+wymijy-u/2 =0
- . ~ 2 ~

W] M3+ w2 m23 + W3m3~ + wy m3y - u/2 =0

W] My + W2 M24 + W3M3y + Wy My’ - u/2 =0

w1 + W2 + W3 + Wy -1 =0

The variables wj's and u are solved by the SOLVE function. If all the w; >0, then the
solution to (II.1) is given by this solution. This solution corresponds to the occasion that
the minimum of f (w) is obtained in the interior of the feasible region which is a
tetrahedron.

Case 2: w|=0,,2=)3=4=0, then equation (Ill.3) reduces to

w2 12 + W3mj3 + wymig-x/2  -uf2 =0
w2 6122 + W3 M23 + Wy moy -u/2 =0
W2 m23 + w3 r?132 + Wy m3y -u/2 =0
W2 M2y + W3 m3y + wy my2 - u/2 -0
w2 + W3 + Wy -1 =0

Having solved this linear equation, if w2, w3, wg, and |, are all positive, then the
minimum of f(w) within the feasible region is given by this solution. This minimum is
obtained at the boundary of the tetrahedron, i.e. one of the four faces. In terms of
composite estimation, this minimum is obtained by just combining Y7, Y3, and Y.

Cases 3, 4 and 5 can be derived similarly.

Case 6: W3=Wl=)]1=)2 = 0

wy g’ s wa 2 - u/2 -0
Wi mi2 + w2 m2 - )5/2 - u/2 -0
WImI3+ w2m23  -,/2 - u/2 -0
W] mly + w2 m2y - u/2 -0
w1 + W2 =1
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If the solutions wy, w2, 13, and 4 are all positive, then it is the minimum of the equation
(I1.1). It corresponds to the occasion that the minimum of f(w) within the tetrahedron is
attained at one of the six edges. It is best to use just the cornbination of Y| and Y.
Cases 7-11 are derived similarly.

Cases 12-15 correspond to the occasion that the minimum of f(w) is attained at the
vertices of the tetrahedron. It is best to use just one of the preliminary estimators.
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Appendix III(a). SAS Program

J/ ss<s JOB (-se,c-syaon ,SR,B6),'LYNN',

// USFRz. - . ,PASSWORD=‘: -\ ,

// MSGLEVEL=(2,0), CLASS=1

/*ROUTE PRINT RMTA478

//STFP1 EXFEC SAS, TIME=(30,30)

//T% DD DSN=SR780.LK.INDINOGS.JUNFRY.DATA, UNIT=SYSDA,
// DISP=0OLD

//0UT DD DSM=SR780.LX, PSEUDOSS . TNDT. DATA, UNIT=SYSSR,
// DISP=(NEW,CATLG),SPACF=(TRK,(100,10),RLSF)

//SYSTH DD #

DATA REDUCED;

SET IN.INDIHOGS;

KEEP IDS ID6 IDO P7 P12 P200 P200 P402 P815 P816 P840 POOO;

DATA AREA;
SET REDUCED;
IF ID5>=100;

DATA ASSIGN;
SET REDUCED;

TF ID5<=99;

RETAIN SEED1 234678003;
PRAN=RANUNI(SEED1);

PROC SORT DATA=ASSIGM;
BY IDS PRAN;

DATA LISTREP;
SET;
PREP=MOD{_N_-1,U4);

PUN;
%MACRO CREATE;

4DO I=1 %TO 10;

DATA DATA&I;

SET REDUCED;

IF 1101<=ID5<=1119 AND P7=&1 THEN DFLETE;
IF 1101<=ID5<=1119 THEN P12=P12%10/9;
RUN;

SEND;

D0 I= 11 %TO 15;

DATA DATA&T;

SET REDUCED;

IF 1201<=IDS<=1211 AND P7=%EVAL{&I-10) THEN DFLETE;
IF 1201<=IDS<=1211 THEN P12=P12%5/4;

RUN;

LEND;

1D0 1=16 %TO 20;

DATA DATA&I;

SET REDUCED;

IF 2001<=1ID5<¢=2006 AND P7=%FVAL(&I-15) THEN DFLFTE;
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TF 2001<=1ID5¢=2006
RUM;
4END;

iP0 I=21 3TO 25;
DATA DATA&T;

SFT REDUCFED;

IF 3101<=TIDR<=3105
IF 3101<=1ID54<=310%
RUN;

%END;

£DO I=26 %TO 20;
DATA DATA&I;

SET REDUCED;

IF 4001<=1ID5<=4003
IF 4001<=ID5<=4003
RUN;

1END;

THFM P12=P12¥5/4;

AND P7=%FVAL(&I-20)
THEN P12-P12%#5/L;

AND P7=2FVAL(AI-25)
THFN P12=P12%5/4;

TDO I=31 %TO 34; DATA DATAET;

SET LISTREP AREA;

IF ID5=85 AND PREP=

RUN;
TEND;

D0 I=35 %TO 38;
DATA DATA&I;
SET LISTREP ARFA;

IF ID5=86 AND PREP=%FVAL(&I-35)

RUN;
4FND;

IDO I=39 %TO U2;
DATA DATA&I;
SET LISTREP AREA;

IF ID5=87 AND PREP=fEVAL(&I-29)

RUN;
$END;

1D0 I=43 %TO U6;
DATA DATALI;
SET LISTREP AREA;

IF ID5=88 AND PREP=%FEVAL(&T-43)

RUN;
TEND;

$DO I=47 $TO 50;
DATA DATA&I;
SET LISTREP ARFA;

IF ID5=93 AND PREP-%EVAL{&TI-U47)

RUN;
$END;

ZEVAL(&T-31)

THFN

THEM

THFN

THEN

THEN

THEN DFLETE;

THEN DELFTT;

DFLETE;

DELETF;

DFLETE;

DELETE;

DFLFTE;
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%DO I=51 %TO 54;

DATA DATA&I;

SET LISTREP ARFA;

IF ID5=94 AND PREP=%EVAL(&I-51) THEN DELETE;
RUN;

%END;

%D0 I=55 %TO 55;

DATA DATA&I;

SET REDUCED;

IF ID5=3201 OR ID5=3301 OR ID5=5001 THFN DFLFTE;
RUN;

1END;

DO I=86 %TO 56;
DATA DATA&I;

SET REDUCED;
RUN;

%END;

4MEND CRFEATE;
%CREATE

DATA NSIZE;
INPUT IDS5 NPOP;
CARDS;

85 14599

86 2924

87 2307

88 1579

93 hLay

94 136

98 26

2

RUN;
TMACRO PLAY;

4D0 I=1 %$TO 56;

DATA DA&T;

SET DATA&T;

IF IDS>100;

IF P403=3 THEN P301=0;
FLSE P301=P300;

IF P403=3 THEN P201z0;
FLSE P201=P200;

IF P818=0 THEN PS500=P301#P840/P900;
FLSE P500=0;

IF P403=1 THEN P600=PS00;
FLSE P600=0;

P302=P301%PR15;

PROC SUMMARY;

CLASS ID6;
VAR P20%1 P302 PS00 P60O;
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ID IDS P12;
OUTPUT OUT=SEG SUM=TR FARM VT WT1;

DATA SEGCLN;
SET SEG;

IF _TYPE =1;
TRE=TR#P12;
FARME=FARM®P12;
WTE=WT#P12;
WT1E=WT1#P12;

PROC SORT OUT=SORSEG;
BY IDS;

PROC SUMMARY DATA=SORSFG:

VAR TRE FARME WTE WT1E P12;

BY IDS;

OUTPUT OUT=TOTAL Nz=NN MEAM(P12)=AP12 SUM=STR SFR SWT SWTNOL SP12;

PROC SUMMARY DATA=TOTAL;
VAR STR SFR SWT SWTNOL;
OUTPUT OUT=ARTL SUM=ATR AFR AWT AWTNOL;

PROC CORR DATA=SORSEG NOPRINT COV OUTP=A;
VAR TRE FARME WTE WTI1E;
BY ID%;

DATA NEW;

SET 4;

IF _TYPE_ M) 'MEAN' THFN DFLFTE;
IF _TYPE_ EQ 'STD' THEN DELETE;
IF _TYPE_ EQ 'N' THEN DFELETE;
IF _TYPE_EQ 'CORR' THEN DFLETE;
DROP _TYPE ;

DATA NEWA;

MERGE NEW TOTAL;

BY IDS;
VTR=TRE®#NN#(1-1/AP12);
VFR=FARME®NN®#(1-1/AP12);
VWT=WTE*NN®*(1-1/AP12);
VHWT1=WT1E®*NN®(1-1/AP12);

DATA STEP;

SET NEWA;
ROW=MOD(_N_-1,4);

PROC SORT OUT=SORSTP;
BY ROW;

PROC SUMMARY DATA=SORSTP;

VAR VTR VFR VWT VWT1;

BY ROW;

OUTPUT OUT=ACOV SUM=COVTR COVFR COVWT COVWTI;
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DATA LIST;
SET DATA&I;
IF ID9 LF 5 AND IDS LT 99;

PROC SORT DATA-LIST;
RY IDA;

DATA LISTCL;

SET LIST;

BY ID6;

RETAIN TOT 0;
P305=P300#*P403;
TOT=SUM(TOT, P205) ;
IF LAST.ID6 THEN DO;
P305=TOT;

TOT=0;

QUTPUT;

END;

PROC SUMMARY DATA=LISTCL;

CLASS IDS;

VAR P30%;

OUTPUT OUT=STAT N=COUNT MEAN=MLST VAR=VLST;

DATA STATCL;
SET STAT;
IF _TYPE =0 THEN DFLETE;

PROC SORT DATA-STATCL OUT=STASOR;
BY IDS;

DATA NEWLI;

MERGE NSIZE STASOR;

BY 1D5;

NMLST=ML.ST¥*NPOP;

NVLST=VLST*NPOP*%#2% (1_COUNT/NPOP)/COUNT;

DATA EO;

SET NFWLI;

IF 93<=1D5<=99;

PROC SUMMARY;

VAR NMLST NVLST;

OUTPUT OUT=EOT SUM=ECTL EQV;

DATA NONEO;

SET NEWLI;

IF 81<=1ID54=92;

PROC SUMMARY;

VAR NMLST NVLST;

OUTPUT OQUT=LIOUT SUM=LITL LIV;

DATA COMP;
MERGE ARTL FOT LIOUT;
HTR= ATR+FOTL
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HFR=AFR+EQTL
HUT= AWT+FOTL ;
HMF= AWTYOL+LITL+EOTL ;

PROC MATRIX FRRMAX=30C;

FETCH X DATA=-ACOV;

FETCH Y DATA=COMP;

M1=X(1,4)+Y(1,8);

MP2=(Y(1,12)=Y(1,11))#%¥0.200 L(X(1,5)}+Y(1,R))¥2;
V2:=X(2,5)+Y(1,8);

MO ZMP2(OV2;
MP3=(Y(1,13)=Y(1,11))%¥2M1(X(1,6)+Y(1,8))*2;
V3:=X(3,6)+Y(1,8);

MI=MP2COV3;

MPU= (Y(1,14)=Y(1,11)) #8211 (X(1,7)+Y(1,8))%2;
VE=X(4,7)+Y(1,8)+Y(1,10);

My = MPUCOVY ;

M12=X(1,5)+Y(1,8);

MIN=X(1,7)+Y(1,8);
M23=(Y(1,12)=Y(1,11))8(Y(1,13)=Y(1,11))=M1+X(1,5)+X(1,6)+2%Y(1,8);
MO (Y(1,12)=Y(1,11))¥(Y{1,10)=Y(1,11))=-M1+X(1,5)+X(1,7)+2%Y(1,8);
M3u:(Y(1.13)-Y(1.11))’(Y(1,1U)-Y(1.11))—H1+X(1.6)+X(1.7)+?*Y(1-8);
MA11=M111M12;

MA12=M13 ) 1ML,

MAT=MAT111MAT2;

MA21=M1211M2;

MA22=M23 | 1M24;

MA2=MA2111MA22;

MA31:=M13}1M23;

MA32=M3} I M34;

MA3=MA31}IMA32;

MAN1=MTY ) IM2U

MAU2=M3Y4} ML,

MAN=MANT T IMAUD;

MAS=1 1 1 1 0O,

MC1=MA1//MA2;

MC2=MAR/ /MAl;

MC=MC1//MC2;

MCC=0.5/0.5/0.5/0.5;

MV=MC! !MCC;

MVV=MV//MAS;

B=0/0/0/0/1;

W=SOLVE{MVV,B);

W(Sy1)‘-‘0;

WW=%STR(WE ') ;

YY=Y(1,11)//Y(1,12);

YZ=Y(1,13)//Y(1,14);

EST=YY//YZ;

EST1=EST//W(5,1);

FEST=WW®*EST1;

MB1=M1} IM14;
MB2 MUY MY
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MB=MB1//MB2;

MBC=0.5/0.5;

MBV=MB ! |MBC;

MB3=1 1 0;

MBVV=MBV//MB3;

BB=0/0/1;

WR=SOLVE(MBVV, BB) ;
ESTB=Y(1,11)*WRB(1,1)+Y(1,14)#yB(2,1);

SD1=SQRT(M1);

SD2=3QRT(V2);

SD3=SQRT(V3);

SDU=SQRT(V4);

RMSQ2=SQRT(M2) ;

RMSQ3=SQRT(M3) ;

RMSQU=SQRT(M4);

MOM2=(SD1{1SD2) | 1 (SD3|1SD4) | ! (RMSQ2 | IRMSQ3) | IRMSQY;

OUTPUT MOM2 OUT=T1(RENAME=(COL1=SD1 COL2=SD2 COL3=SD3 COL4=SD4 COL5=RMSQ2
COL6=RMSQ3 COL7=RMSQ4)};

MVER1=(M1//M12)//(M13//M1L);
MVER2=(M12//M2)//{M23//M2U4} ;
MVFR3=(M13//M23)//(M3//M34);
MVERU=(M14//V2H) // (M34/ /M) ;
U=0.5/0.5/0.5/0.5;

MI==-U;

MVER12=MVER1 ! {MVER2;
MVER34=MVER3| IMVERY;
MVER=MVER12! {MVER34;
MVERU=MVER! I MJ;
MCONU=MVERU//MAS;
WCNL=SOLVE(MCON4, B) ;
ESTCNU=%STR(WCN4% ') #EST?;

WCOML = (WCNU(1,1) //WCNL(2,1))// (WCNU(3,1)//WCNU(U,1));
MINCNU=ESTR(WCONUX ' ) ®MVER¥WCONL;

MVERM1=MVER2 | {MVER34;

LAMDA1=-0.5/0/0/0;

MM1U=(MVERM1| |LAMDA1) | IMU;

LAST3=1 1 1 0 0;

MCNM1=MM1U//LAST3;

WCNM1=SOLVE(MCNM1, B) ;
YM1=(Y(1,12)//Y2)//(0//0);
ESTM1=2STR{WCNM1% ') #YM1;
WM1=(0//¥WCNM1(1,1))// (WCNM1(2,1) //WCNM1(3,1));
CN3M1=%STR(WM1% ') #.VER*#M1;

MVERM2=MVER1 ! |MVER34;
LAMDA2=0/-0.5/0/0;

MM2U= (MVERM2 ! | LAMDA2) | IMU;
MCNM2=MM2U//LAST3;
WCNM2=SOLVE(MCKNM2,R) ;
YM2=(Y(1,11)//Y2)//(0//0};
ESTM2=%STR(WCNM2% ') #YM2;
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WM2=(WCNM2(1,1)//0)//(WCNM2(2,1)//WCNM2(3,1));
CN3M2=%STR(WM2%' ) ®MVER®YI2;

MVERM3-MVER12! |MVERY;

LAMDA3=0/0/-0.5/0;

MM3U= (MVERM3 ! {LAMDA3) | IMU;

MCNM3=MM3U//LAST3;

WCNM3=SOLVE(MCNM3, B) ;
YM3=(YY//Y(1,14))//(0//0);

ESTM3=%STR(WCNM3% ') #YM3;

WM3= (WCNM3(1,1)//WCNM3(2,1))//(0//WCNM3(3,1));
CN3M3=%STR(WM3% ') ¥MVER¥WM3;

MVERMU=MVER12} |MVER3;

LAMDA4=0/0/0/-0.5;

MMY U= (MVERMY | ILAMDAY) | MU

MCNMU=MM4U//LAST3;

WCNMl =SOLVE(MCNMY ,B) ;
YMU=(YY//Y(1,13))//(0//0);
ESTM4=%STR(WCNMU% ') #YMY ;

VUMY = (WCNME(1,1)//WCNMU(2,1))//(WCNMU(3,1)//0);
CN3MU=%STR(WMUE ') *MVER#®WMY ;

L2D3=0/0/-0.5/0;
L2DU=0/0/0/-0.5;
M34U=(MVER12{|L2D3) | 1 (L2DL1 M) ;
LAST=1 1 0 0 O;
MCNM34=M34U//LAST,;
WCNM34=SOLVE(MCNM34,RB) ;
TRO=0/0/0;

YM34=YY//TRO;
ESTM34=%STR(WCNM34% ') #YM3L;
WM3U=(WCNM3U4(1,1)//WCNM3L(2,1))//(0//0);
CNM3U=%STR{WM3LT ' ) MV ER®WHMIL,;

L2D2=0/-0.5/0/0;
M2MU=((MVERT!IMVER3) | 1 (L2D2]11L2DY)) | IMU;
MCNM2U=M2HU//LAST;
WCNM2U4=SOLVE(MCNM2Y,B) ;
YM2U=(Y(1,11)//¥(1,13))//TRO;

ESTM24=% STR(WCNM2LE ' ) #YM2 L ;

WM2U = (WCNM2U(1,1)//0)//(WCNM2U(2,1)//0);
CNM2L=%STR(WM2U% ') SMVER*WIM2Y ;

L2D1=-0.5/0/0/0;
M12U=({MVER3 | {MVERL) } 1 (L2D111L2D2)) | IMU;
MCNM12=M12U//LAST;
WCNM12=SOLVE(MCNM12,B) ;

YM12=YZ//TRO;
ESTM12=%STR(WCNM12% ') #YM12;
WM12=(0//0)//(WCNM12(1,1)//WCNMI2(2,1));
CNM12=%STR(WM12% ' ) *MVER*W}M12;

M13U=((MVER2} IMVERU) 11 (L2D111L2D3)) 1 1MU;
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MCNM13:=M13U//LAST;
WCNM13=SOLVE(MCNH13,R) ;
M13=(Y(1,12)//Y(1,14))//TRO;
ESTM13=%STR({WCNM13% ') ¥YM13;
WM13=(0//WCNM13(1,1))//7(0//WCIM13(2,1));
CNM13=%2STR(WM13% ') ®MVER*\M13;

MI4U=( (MVER2 ] IMVER3) 11 (L2D111L2DU) ) 1MU;
MCNM1U=M1UU//LAST;
WCNMIL=SOLVE(MICNM1IY, B);
YM14=(Y(1,12)//Y(1,13))//TRO;
ESTM14=2STR(WCNMI UL *) #YM1Y;
WM1L=(0//WCNMI4(1,1) ) /7 (WCNMI4(2,1)//0);
CNM14=FSTRIWHI4% ' ) ¥ MVER¥WM14;

M23U=((MVERT ! IMVERY) | 1 (L2D211L2D3)) | IMU;
MCNM23=M23U//LAST;
VCNM23=SOLVE(MCNIM23,B);
YM23=(Y(1,11)//Y(1,14))//TPO;
ESTM23:z%STR(WCNIR23% ") #YM23;
WM23=(WCNM23(1,1)//0)//(0//WCNM23(2,1));
CNM23=%4STR(WM23% ') EMVER¥YM23;

OUTPUT ESTM23 OUT=OUTM23;

LASTT=1 0 0 O 0;

M2340=((MVERY | {L2D2) {1 (L2D3}!L2DW)) | MU,
MCNM23L4=M234U//LASTT;

WCNM234= SOLVE(MCNM23 4, R) ;
ESTM234=Y(1,11);

CNM234=M1;

M134U=( (MVER2}!L2D1) ! 1 (L2D3}1L2Dk)) | IMU;
MCNM134=M134U//LASTT;
WCNM13%4=S0LVE(MCNM134,B) ;
ESTM134=Y(1,12);

CHMI3L=MD;

M124U=( (MVER3 ! !L2D1) !} (L2D2! !L2D4)) | IMU;
MCNM124=M1241//LASTT;
WCNM124=SOLVE(MCNM12L,B) ;
ESTM124=Y(1,13);

CNM124=M3;

M123U=((MVERN | 1L2D1) } 1 (L2D211L2D3)) | iMU;
MCNM123=M123U//LASTT;
WCNM123=SOLVE(MCNM123,R);
ESTM123=Y(1,14);

CNM123:=M4;

IF WCONA>=0 THEN OUTPUT ESTCN4 OUT=T;
IF WCON4>=0 THEN PRINT WCONU;
WCNM1S=WCNM1(1 2 3 4,1);

IF WCKM1S>=0 THEN OUTPUT ESTM! OUT=T;
IF WCNM1S>=0 THEN PRINT WCNM1S;
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WCNM2S=WCNM2(1 2 3

h,1);

IF WCONM23>=C THEM OUTPUT ESTH? OUT=T,;
IF WCNM2S>=0 THEM PRIMNT WCNIS;

WCNM3S=WCKIRR(1 2 3

4,1);

IF WCNM3S>=0 THFEN OUTPUT FSTM? OUT=T;
IF WCNM2S>=0 THEN PRINT V'CMINS;

WCNMUS=WCNMU(1 2 3

IF WCNMUS>=0 THEN OUTPUT SSTHMH OUT=T:
IF WCNMUSS=0 THEN PRINT LCHMUS;

WCNMRUS=WCNMIL(Y 2
IF WCNM3u43>=0 THEN
IF WCNM24S>=C THENM
WCNM2U S=wCNM2U (1 2
IF WCONM2US>=0 THEN
IF WCNM2U4S>=0 THEN
WCNM12S=WCNM12(1 2
IF WCNM12S>=0 THEN
IF WCNM128>=0 THFM
WCNM1238=WCNM13(1 2
IF WCNM13S>=0 THEN
IF WCNM13S>=0 THEN
WCNM14S=WCNMIu(1 2
IF WCNM1U4S>=0 THEN
IF WCNM14S>=0 THFN
WCNM2233S=WCNM23(1 2
IF WCNM23S>=0 THENM
IF WCNM235>=0 THEN
WCNM2IUS=WCNM23 4 (1

34,1,

OUTPUT FESTM34 QUT=T;
PRINT WONM2YS;

3 4,1,

OQUTPUT ESTHM2H OUT=T;:
PRINT WONMRLS:

3 4,1},

QUTPUT FSTH12 OUT=T;
PRINT WCMM12S;
34,1,

OUTPUT FESTM13 OUT=T;
PRINT WCHMI3S;
34,1);

OUTPUT FSTM14 OUT=T;
PRINT WCHM1L4S;

3 4,1);

QUTPUT RSTM23 OUT=T;
PRINT WCMNM23S;

23 4,1);

IF WCNM2343>=0 THEN OUTPIT ESTM23Y4 OUT=T;
IF WCNM234S>=0 THFN PRINT WCNMP34S;

WCNM134 S=WCNM13 4 (1

23 4,1);

IF WCNM134S>=0 THEN OUTPUT ©STM134 OUT=T;
IF WCNM134S>=0 THEN PRINT WCHNM134S;

WCNM1243=WCNH124 (1

2 3 4,1,

IF WCNM124S>=0 THEN OUTPUT <STM124 OUT=T;
IF WCNM124S>=0 THEN PRIMT UCNM1245S;

WCNM122S=WCHM123(1

IF WCNM12358>=0 THEN OUTPUT =STM123 OUT=T;
IF WCNM123S>=0 THEN PRINT WCNM123S;

DATA MEWT;
SET T1;
DROP ROV ;

DATA SCOMP;
SET OUTM23;

REMAME COL1=COMP14;

DROP ROW ;

DATA KFACTR&I;
MERGE T NEWT? COMP

SCOMP;

DROP ROW _TYPE _FREQ ;

K=2;
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DIFF=HTR-COL1;

KSD1=K#3D1;

IF DIFF>=KSD1 THEN LTEST=HTR-KSD1;
FLSE IF -DIFF>=KSD1 THEN LTEST=HTR+KSD1;
FLSE LTEST=COL1;

PROC PRINT;

RUN;

%END;

YMEND PLAY;

TPLAY

RUN;

DATA KFULL;

SET KFACTRS6;

KEEP COL1 HTR HFR HWT HMF COMP14 LTEST K SD1 SD2 SD3 SD4 RMSQ2 RMSQ3 RMSQb;
RENAME COL1=FCOLY HTR=FHTR HFR=FHFR HWT=FHWT HMF=FHMF

COMP14=FCOMP14 LTEST=FLTEST SD1=FSD1 SD2 =FSD2 SD3z=FSD3 SD4=FSDY
RMS02=FRMSQ2 RMSQ3=-FRMSQ3 RMSQU=FRMSQY;

PROC PRINT;

DATA ALL1;

SET KFACTR1 KFACTR2 KFACTR3 KFACTR4 KFACTRS
KFACTR6 KFACTR7T KFACTR8 KFACTR9 KFACTR10
KFACTR11 XFACTR12 XFACTR13 KFACTR14 KFACTR15
KFACTR16 KFACTR17 KFACTR18 KFACTR19 KFACTR20
KFACTR21 KFACTR22 KFACTR23 KFACTR24 KFACTR25
KFACTR26 KFACTR27 KFACTR28 KFACTR29 KFACTR30
KFACTR31 KFACTR32 KFACTR33 KFACTR34 KFACTR35
KFACTR36 KFACTR37 KFACTR38 KFACTR39 KFACTR40
KFACTRY1 XFACTRU2 KFACTR43 KFACTRAM KFACTRYUS;

DATA ALLZ2;
SET KFACTRUE KFACTRU7? KFACTR48 XFACTR49 KFACTRSO
KFACTRS1 KFACTR52 KFACTR53 KFACTRS5Y4 KFACTRSS;

DATA ALL;
SET ALL1 ALL2;

DATA PSEUDO;

MERGE ALL XFULL;

BY K;

G=55;
PCOL1=G®*FCOL1-(G=1) *COL1;
PHTR=G*FHTR-(G~-1) *HTR;
PHFR=G®FHFR-(G-1) #HFR;
PHWT=G#FHWT-(G~-1) ®*HWT;
PHMF=G¥*FHMF-(G-1) #HMF;
PCOMP14=G*FCOMP14~(G~-1) ¥*COMP14;
PLTEST=C*FLTEST-(G~-1)*LTEST;
B2SQ=(HFR~-HTR) ##2;
B3SO=(HWT-HTR) *##2;

BY SQ=(HMF-HTR) #%2;
B5SQ=(LTEST-HTR)#%2,

-53-



B6 SQ=( COMP14-HTR) #%2;
PROC PRINT;

PROC CORR DATA=PSEUDO COV OUTP=POUT;
VAR PHTR PHFR PHWT PHMF PLTTST PCOMP1lY;
PROC PRINT DATA=POUT;

PROC CORR DATA=PSEUDO COV OUTP=ALLOUT;
VAR HTR HFR HWT HMF LTEST COMP14;
PROC PRINT DATA=ALLOUT;

PROC MEANS DATA=PSEUDO;
VAR B2SQ B3SQ BASQ B55Q B6HSQ;
OUTPUT OUT=RIASQ MFAN=MN2 N3 MNL N5 MN6;

DATA PCOV;
SET POUT;
IF _TYPE ='COV' AND _NAME ='PHTR';

DATA M3Q;

MERGE BIASQ PCOV KFULL;

G=55;

EPMS02=MN2+(PHFR/G) #2-PHTR/G;
EPMS03=MN3+(PHUT/G) #2-PHTR/G;
EPMSQU=MNY4 4+ ( PHMF/G) #2-PHTR/G;
EPMSQ5=MN5+( PLTEST/G) #*2~-PHTR/G;
EPMSQ6=MN6+( PCOMP14/G) #2-PHTR/G;
MSQ2F=(FHFR-FHTR) *#2 4+ ( PHFR/G) ¥2-PHTR/G;
MSQ3F=(FHWT-FHTR) ##24 ( PHWT/C) #2-PHTR/G;
MSQLUF=(FHMF-FHTR) #¥24( PHMF/G) #2-PHTR/G;
MSQSF=(FLTEST~-FHTR) ##24+( PLLTEST/C) ¥2~-PHTR/C;
MSQEF=(FCOMP1U4-FHTR) * %2+ ( PCOMP1U/G) ¥2-PHTR/G;
REPMSQ2=SQRT(EPMSQ2) ;
REPMSQ3=-SQRT(EPMSQ3);
REPMSQU=SQRT(EPMSQU) ;
REPMSQ5=SQRT(EPMS05) ;
REPMSQ6=SQRT(EPMSQ6) ;
RMSQ2F=SQRT(MSQ2F) ;

PMSQ3F=SQRT(MSQ3F);

RMSQU4F=SQRT(MSQUF);

RMSQS5F=SQRT(MSQ5F) ;

RMSQ6F=SQRT(MSQEF) ;

PROC PRINT;

DATA SELMN;
SET POUT;

IF _TYPE ='MEAN';

RENAME PHTR=JKHTR PHFR=.JKMFR PHWT=JKHWT PHMF=JKHMF PLTEST=JKLTEST
PCOMP14=JKCOMP14;

DATA SFLSD:

SET POUT;

IF _TYPE_='STD';
G=5%;
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VJK1=PHTR*#2/G;
VJ¥2=PHFR*#2/C;
VJK2-PHWT*#2/G;
VJKL= PHUF#%2/G;
VJIK5=PLTEST*#2/G;
VJKE= PCOMPIU® %2/
PPOC PRINT;

DATA;

MERGE KFULL SELMN SELSD;

G=55;

VP1=VJK1+{FHTR-JKHTR) #¥2/(G~1) ;
VP2:=VJK2+(FHFR-JKHFR) *#2/(G-1);
VP3=VJIK3+ (FHWT-JKHUT) ®#¥2/(G-1);
VPU=VJIKY+(FEMF-JKHMF) ##2/(C-1);
YPS=VJKS+(FLTEST-JKLTEST) ¥%2/(G-1) ;
VPE=VJK6+(FCOMP1U-JKCOMP1 L) ¥%#2/(G-1);
SDJKF1=3QRT(VP1);
SDIKF2=SQRT(VP2);
SDJKF3=SORT(VP3);
SDJKFU=SQRT(VPY);
SDJKF5=SQRT(VPS) ;
SDJKF6=SQRT(VP6) ;
SDIJK1=SORT(VJK1);
SDJK2=SQRT(VJIK2);
SDJ¥3=SQRT(VJIK3) ;
SDIJKU=SQRT(VJIKY);
SDJ¥5=SQRT(VJIKS) ;
SDJK6=SORT(VJIKE) ;

PROC PRINT;

DATA OUT.PSEUDO;
SET PSFUDO;
/%
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Avpendix 111(b). Winsorized Varianc: Program

/7 oo OB (oooooonoex R,B6), 'LYNN',
// USER=xxxxsexkxs PASSWORD= v,

// MSGLEVEL=(2,0),CLASS=K

/®*ROUTE PRINT RMTA478

//STEP1 EXEC SAS,TIME=(2,30)

//IN DD DSN=SR780.LK.PSEUDO55.INDI.DATA,UNIT=SYSDA,
// DISP=0LD

//SYSIN DD *

DATA TRACK;

SET IN.PSEUDO;

KEEP PHTR K;

PROC SORT OUT=SORTR;
BY PHTR;

DATA WTTR;

SET SORTR;

ALPHA=0.1;

CUTOFF=FLOOR(55%ALPHA) ;

UPCUT=55-(CUTOFF~1) ;

IF _N_<=CUTOFF OR _N >=UPCUT THEN W=0;

IF N _=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<= N <=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR PHTR;

WEIGHT W;

ID K;

OUTPUT OUT=TROUT MEAN=TRMEAN ;

DATA;

MERGE TRACK TROUT;

BY K;
TRSQ=(PHTR-TRMEAN) %#2;

PROC SORT OUT=SORTRSQ;
BY TR3Q;

DATA WTTRSQ;

SET SORTRSQ;

ALPHA=0.1;

CUTOFF=FLOOR(55%ALPHA) ;

UPCUT=55-(CUTOFF-1) ;

IF _N_<=CUTOFF OR _N >=UPCUT THEN W=0;

IF _N _=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N _<=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR TRSQ;

WEIGHT W;

ID K;

OUTPUT OUT=TRSQOUT MEAN=TRVAR ;

DATA FARM;
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SET IN.PSEUDO;
KEEP PHFR K;

PROC SORT OUT=SORFR;
BY PHFR;

DATA WTFR;
SET SORFR;

ALPHA=0.1;

CUTOFF=FLOOR(55%ALPHA) ;

UPCUT=55-( CUTOFF-1) ;

IF _N_<=CUTOFF OR _N >=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N <=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR PHFR;

WEIGHT W;

ID K;

OUTPUT OUT=FROUT MEAN=FRMEAN ;

DATA;

MERGE FARM FROUT;

BY K;

FRSQ=( PHFR-FRMEAN) #%2;

PROC SORT OUT=SORFRS3Q;
BY FRSQ;

DATA WTFRSQ;

SET SORFRSQ;

ALPHA=0.1;

CUTOFF=FLOOR(55%ALPHA) ;

UPCUT=55-( CUTOFF-1) ;

IF _N_<=CUTOFF OR _N_>zUPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N <=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;
VAR FRSQ;

WEIGHT W;

D K;

OUTPUT OUT=FRSQOUT MEAN=FRVAR ;

DATA WEIGHT;
SET IN.PSEUDO;
KEEP PHWT K;

PROC SORT OUT=SORWT;
BY PHWT;

DATA WIWT;
SET SORWT;
ALPHA=0.1;
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CUTOFF=FLOOR(S5#%ALPHA) ;

UPCUT=55-( CUTOFF-1) ;

IF _N_<=CUTOFF OR _N >zUPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<= N <=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR PHWT;

WEIGHT W;

ID X;

OUTPUT OUT=WTOUT MEAN=WTMEAN;

DATA;

MERGE WEIGHT WTOUT;
BY K;

WTSQ=( PHWT-WTMEAN ) ¥%2;

PROC SORT OUT=SORWTSQ;
BY WTSQ;

DATA WTWTSQ;

SET SORWTSQ;

ALPHA=0.1;

CUTOFF=FLOOR(55%ALPHA) ;

UPCUT=55-( CUTOFF-1) ;

IF _N_<=CUTOFF OR _N_>=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<= N <=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR WTSQ;

WEIGHT W;

ID K;

OUTPUT OUT=WTSQOUT MEAN=WTVAR ;

DATA MF;
SET IN.PSEUDO;
KEEP PHMF K;

PROC SORT OUT=SORMF;
BY PHMF;

DATA WTMF;

SET SORMF;

ALPHA=0.1;

CUTOFF=FLOOR(55%ALPHA) ;

UPCUT=55-( CUTOFF-1) ;

IF _N_<=CUTOFF OR _N_>=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N _=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N_<=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;
VAR PHMF;
WEIGHT W;
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ID K;
OUTPUT OUT=MFOUT MEAN=MFMEAN;

DATA;

MERGE MF MFOUT;

BY K;

MFSQ= ( PHMF-MFMEAN) %%2;

PROC SORT OUT=SORMFSQ;
BY MFSQ;

DATA WTMFSQ;

SET SORMFSQ;

ALPHA=0.1;

CUTOFF=FLOOR(55*ALPHA) ;

UPCUT=55-(CUTOFF-1) ;

IF _N <=CUTOFF OR _N_>=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_z(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N_<=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR MFSQ;

WEIGHT W;

ID K;

QUTPUT OUT=MFSQOUT MEAN=MFVAR ;

DATA EST;
SET IN.PSEUDO;
KEEP PLTEST K;

PROC SORT OUT=SOREST;
BY PLTEST;

DATA WTEST;

SET SOREST;

ALPHA=0.1;

CUTOFF=FLOOR(55%ALPHA) ;

UPCUT=55-( CUTOFF-1);

IF _N_<=CUTOFF OR _N_>=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N_<=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR PLTEST;

WEIGHT W;

ID K;

OUTPUT OUT=ESTOUT MEAN=ESTMEAN;

DATA;

MERGE EST ESTOUT;

BY K;

ESTSQ= ( PLTEST-ESTMEAN) *##2;

PROC SORT OUT=SOREST3Q;
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BY ESTQ;

DATA WTESTSQ;

SET SORESTSQ;

ALPHA=0.1;

CUTOFF=FLOOR(55%ALPHA) ;

UPCUT=55-( CUTOFF-1) ;

IF _N_<=CUTOFF OR _N >=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N ={UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N <=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR ESTSQ;

WEIGHT W;

ID K;

OUTPUT OUT=ESTSQOUT MEAN=zESTVAR ;

DATA COMP1Y4;
SET IN.PSEUDO;
KEEP PCOMP14 K;

PROC SORT OUT=SOR14;
BY PCOMP14;

DATA WT1l;

SET SOR14;

ALPHA=0.1;

CUTOFF=FLOOR (55%ALPHA) ;

UPCUT=55-( CUTOFF-1);

IF _N <=CUTOFF OR _N_>=UPCUT THEN W=0;

IF _N -(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N_<=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR PCOMP14;

WEIGHT W;

ID K;

OUTPUT OUT=SROUT MEAN=SRMEAN ;

DATA;

MERGE COMP14 SROUT;

BY K;

SESTSQ=( PCOMP14-SRMEAN) %2 .

PROC SORT OUT=SORSR3Q;
BY SESTSQ;

DATA WTSESTSQ;

SET SORSRSQ;

ALPHA=0.1;

CUTOFF=FLOOR(55%ALPHA) ;

UPCUT=55-( CUTOFF-1) ;

IF _N <=CUTOFF OR _N >zUPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
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IF (CUTOFF+2)<=_N_<=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR SESTSQ;

WEIGHT W;

ID K;

OUTPUT OUT=SRSQOUT MEAN=SESTVAR ;

DATA TRFR;

MERGE IN.PSEUDO TROUT FROUT;

BY K;

KEEP PHTR PHFR TRMEAN FRMEAN PDTRFR;
PDTRFR=( PHTR-TRMEAN) # ( PHFR-FRMEAN) ;

PROC SORT OUT=SORTRFR;
BY PDTRFR;

DATA WTTRFR;

SET SORTRFR;

ALPHA=0.1 H

CUTOFF=FLOOR(55%*AL PHA) ;

UPCUT=55-(CUTOFF-1);

IF _N_<=CUTOFF OR _N >=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<= N <=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR PDTRFR;

WEIGHT W;

OUTPUT OUT=TRFROUT MEAN=COVTRFR ;

DATA TRWT;
MERGE IN.PSEUDO TROUT WTOUT;

BY K;

KEEP PHTR PHWT TRMEAN WTMEAN PDTRWT;
PDTRWT=( PHTR-TRMEAN) * ( PHWT-WTMEAN) ;

PROC SORT OUT=SORTRWT;
BY PDTRWT;

DATA WTTRWT;
SET SORTRWT;

ALPHA=0.1;

CUTOFF=FLOOR(55*ALPHA) ;

UPCUT=55-( CUTOFF=1) ;

IF _N <=CUTOFF OR _N_>zUPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N_<=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR PDTRWT;

WEIGHT W;

OUTPUT OUT=TRWTOUT MEAN=COVTRWT ;
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DATA TRMF;

MERGE IN.PSEUDO TROUT MFOUT;

BY K;

KEEP PHTR PHMF TRMEAN MFMEAN PDTRMF;
PDTRMF=( PHTR-TRMEAN) *( PHMF-MFMEAN) ;

PROC SORT OUT=SORTRMF;
BY PDTRMF;

DATA WTTRMF;

SET SORTRMF;

ALLPHA=0.1;

CUTOFF=FLOOR(55%ALPHA} ;

UPCUT=55-(CUTOFF-1) ;

IF _N_<=CUTOFF OR _N_>=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N <=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;

VAR PDTRMF;

WEIGHT W;

OUTPUT OUT=TRMFOUT MEAN=COVTRMF ;

DATA TREST;

MERGE IN.PSEUDO TROUT ESTOUT;

BY K;

KEEP PHTR PLTEST TRMEAN ESTMEAN PDTREST;
PDTREST=( PHTR-TRMEAN) # ( PLTEST-ESTMEAN) ;

PROC SORT OUT=SORTREST;
BY PDTREST;

DATA WTTREST;

SET SORTREST;

ALPHA=0.1;

CUTOFF=FLOOR(55*ALPHA) ;

UPCUT=55-( CUTOFF-1);

IF _N_<=CUTOFF OR _N >=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N <=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;
VAR PDTREST;

WEIGHT W;

OUTPUT OUT=TRESTOUT MEAN=COVTREST ;

DATA TRP14;

MERGE IN.PSEUDO TROUT SROUT;

BY K;

KEEP PHTR PLTEST TRMEAN SRMEAN PDTRSR;
PDTRSR=( PHTR-TRMEAN) # ( PCOMP14-3RMEAN) ;

PROC SORT OUT=SORTRSR;
BY PDTRSR;
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DATA WTTRSR;
SET SORTRSR;

ALPHA=0.1;

CUTOFF=FLOOR(55%AL PHA) ;

UPCUT=55-( CUTOFF-1) ;

IF _N_<=CUTOFF OR _N >=UPCUT THEN W=0;

IF _N_=(CUTOFF+1) OR _N_=(UPCUT-1) THEN W=1+CUTOFF;
IF (CUTOFF+2)<=_N_<=(UPCUT-2) THEN W=1;

PROC UNIVARIATE;
VAR PDTRSR;

WEIGHT W;

OUTPUT OUT=TRSROUT MEAN=COVTRSR ;

DATA FULL;

SET IN.PSEUDO;

IF _N_=1;

KEEP FHTR FHFR FHWT FHMF FLTEST FCOMP1l4;

DATA ALL;

MERGE TROUT TRSQOUT FROUT FRSQOUT WTOUT WTSQOUT MFOUT MFSQOUT
ESTOUT ESTSQOUT SROUT SRSQOUT TRFROUT TRWTOUT

TRMFOUT TRESTOUT TRSROUT FULL;

N=55;

ALLPHA=0.1;

G=FLOOR(55#ALPHA) ;

C=N/(N-2#%G)/(N-2%G-1) ;

MSQ2=( FRMEAN-TRMEAN) ¥#2,2 #COV TRFR*C-TRV AR¥*C;
MSQ3=(WTMEAN-TRMEAN ) #*#2 4+ 2 *#COVTRWT*C-TRVAR*C;
MSQU = (MFMEAN-TRMEAN ) # %242 #COV TRMF #C-TRVAR¥*C;
MSQ5=( ESTMEAN-TRMEAN) ##2.2#COVTREST#C~TRVAR®C;

MSQ6=( SRMEAN-TRMEAN ) ##2,2#COVTRSR*C~TRV AR*C;
MSQF2=( FHFR-FHTR) ##242%COV TRFR*C-TRV AR*C;
MSQF3=( FHWT-FHTR) ##242 ®COV TRWT®*C-TRV AR%*C;
MSQFY = ( FHMF~-FHTR) ##24+2#COVTRMF *C-TRVAR¥*C;
MSQF5=( FLTEST-FHTR) %242 #COV TREST#C-TRV AR¥*C;
MSQF6=(FCOMP14-FHTR) ##24+2#COVTRSR*C-TRVAR*C;

VJK1=TRVAR®C;

VJK2=FRVAR®C;

VJK3=WTV AR¥*C;

VJK4=MFVAR*C;

VJK5=ESTVAR®C;

VJK6=SESTVAR*C;

VP1=VJK1+(FHTR-TRMEAN) #®2%C ;

VP2=VJK2+(FHFR-FRMEAN) ®%2%C;
VP3=VJK3+(FHWT-WTMEAN ) #%2%C;

VPY=VJKY+( FHMF-MFMEAN) #%28%C;
VP5=VJKS+(FLTEST-ESTMEAN ) ¥ #2%C ;

VP6=VJK6+(FCOMP14~SRMEAN) ##2%C
SDJK1=SQRT(VJK1) ;

SDJK2=SQRT(VJK2) ;

SDJK3=SQRT(VJK3) ;

SDJK4=SQRT(VJKLY) ;

SDJK5=SQRT(VJK5) ;
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SDJK6=SQRT(VJIKS) ;
SDJKF1=SQRT(VP1) ;
SDJKF2=SQRT(VP2) ;
SDJKF3=SQRT(VP3) ;
SDJKF4=SQRT(VPY) ;
SDJKF5=SQRT(VPS5) ;
SDJKF6=SQRT(VP6) ;
RMSQ2=SQRT(MSQ2) ;
RMSQ3=SQRT(MSQ3) ;
RMSQY = SQRT(MSQY) ;
RMSQ5=SQRT(MSQ5) ;
RMSQ6 =SQRT(MSQ6) ;
RMSQF2= SQRT ( MSQF2) ;
RMSQF3=SQRT(MSQF3) ;
RMSQFY = SQRT ( MSQFY) ;
RMSQF5=SQRT(MSQFS5) ;
RMSQF6 = SQRT ( MSQF6) ;
PROC PRINT;
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